Climate Change & Anthropocene Extinction 48: large biodiversity benefits of 1.5 degrees limit (IPCC)

Then of course we also have our climate-ecology series that wanted an update based on IPCC SR15. Judging by IPCC’s special report on 1.5 degrees the ecological benefits of strengthening the global climate target from 2 to 1.5 degrees are relatively large. For instance insect extinction risk (expressed in this case as species losing over half of their geographic range) declines threefold, while range-deduced survival changes for climate-threatened plant and vertebrate species double.

That’s a staggering* difference, for ‘just’ 0.5 degrees of (additional) limited warming, illustrating how biodiversity loss from climate change is exponential to temperature rise – escalating as global average temperatures steadily increase.

[*) To illustrate this is highly non-linear: from 1.5 to 2 degrees warming increases 33%, while insect habitat decline increases threefold. Or: from 2 to 1.5 degrees warming is reduced by 25 percent, while insect habitat loss decreases by 67 percent.]
Continue reading

Understanding Sea Level Rise 6: SLR benefits of keeping warming below 1.5 degrees (IPCC & Pattyn)

If you do one about agriculture, you gotta do one for your sea level rise series too, we heard you say.

Sea level rise projections IPCC SR15 - comparing 1.5 & 2 degrees
Continue reading

Climate & Agriculture 6: Global agricultural benefits of keeping warming below 1.5 degrees (IPCC)

Yes, while the human population keeps growing, climate change is likely to cause various detrimental effects on global agriculture and thereby food security. Like other climate change impacts these effects will increase with the magnitude of the warming, and most likely exponentially so. But what if we manage to limit warming to no more than 1.5 degrees? Here we take a closer look at what IPCC’s recent special report SR15 (‘Special Report on Global Warming of 1.5 °C’) has to say on that topic.

Global impacts of climate change on agriculture, comparing 1.5 degrees to 2 degrees, according to IPCC SR15
Continue reading

Climate & Agriculture 5: Risk of declining (tropical) crop yields has been known for over 25 years

Not just from theoretical thinking, but as calculated outcomes of pioneering climate-crop prediction models – with studies from the early nineties already offering broad patterns of expected changes in agricultural productivity in a warming world. These patterns have of course been fine-tuned by tireless research ever since but already look very familiar to those who follow today’s climate impact research. And that’s something we think deserves our attention…

The influence of climate change on the growing season in a typical temperate, subtropical, tropical and desert climate. Taken from climate model study from 1993.
Continue reading

Climate & Agriculture 4: Yes, heat stress also affects wheat – recent European summers show

Part 3 of this series about the impacts of climate change on global agriculture was centred around a climate model study that indicated major global crop belts could experience production declines as a result of increased heat stress. These authors found strong results for rice, maize, soy – but not for wheat.

That got us digging. Never trust good news, when it comes to climate change.

Wheat productivity declines under climate change
Continue reading

Climate & Agriculture 3: Temperate and subtropical agriculture equally affected by heat stress

Our previous post focused on a study indicating climate change can lead to a net decline in African agricultural productivity – at least for five major food staples, with maize being the most important. The study also showed that it is not precipitation changes, but heat stress that is the main concern.

That is not a uniquely African problem, nor a problem that is constrained to the tropics. Paradoxical as it may seem, increasing heat stress is set to create comparable declines in agricultural productivity in colder (subtropical and temperate) climate regions – affecting other global food staples, like wheat, rice and soy…

Heat stress damage from climate change for 4 global food staples
Continue reading

Climate & Agriculture 2: African net agricultural productivity to decline for 5 major food staples

The impact of 21st century climate change on African agriculture deserves special attention, considering rapid population growth and the fact that the continent is currently already a net importer of agricultural products, while several sub-Saharan countries still depend for a third to over half of their GDP on agricultural output.

Climate change poses an additional stress for these highly dependent nations: for 5 of the 7 most important sub-Saharan food staples (maize, sorghum, millet, groundnut, and cassava) already by the year 2050 significant productivity reductions are expected – decreasing average production between ±22 and ±8 percent, per respective crop:

Climate change to decrease net agricultural productivity major food staples in Africa
Continue reading

Climate & Agriculture 1: African food imports increase, while agricultural dependence stays high

Yes, we have many simultaneous climate series running here at Bits of Science. For instance one about the global temperature trend, another about sea level rise – and of course our series about climate change as a driver to the Anthropocene Mass Extinction (part 47 published last week).

Today we have decided to start another one – about yet another important field where our climate interacts with another crucial system: agriculture. Our main interest will be net productivity, while keeping in mind we have to feed a growing human population on a decreasing amount of land, considering the simultaneous extinction crisis.

African food imports are dramatically increasing
Continue reading

Despite warming trend, Europe can expect several frosty winters – as solar activity drops to minimum

Northwest Europe can expect a couple of winters with relatively frosty conditions, as one key driver of the North Atlantic Oscillation (NAO) is set to favour blockades of westerlies, allowing periods dominated by a supply of cold and relatively dry polar or continental air to flow in from the East or the North.

Current sunspot observations show solar cycle 24 comes to a close, entering a new - and possibly prolonged solar minimum. Image: NOAA.
Current sunspot observations show (the relatively weak) solar cycle 24 has come to a close, entering a new – and possibly prolonged solar minimum. In this article we discuss ramifications for pending European winters.

Based on the developing closure of the current solar cycle (number 24), a relatively long minimum and taking into account a documented time lag these effects may be observed for a relatively large cluster of winters, starting in 2019 and possibly lasting as long as 2026. Do to increased likelihood of a negative phase in the NAO for Northwest Europe these winters may be relatively cool – but not extremely cold:

Continue reading

Climate Change & Anthropocene Extinction 47: Can species adapt by changing their fitness curves?

As we discussed in our previous article, ecologists use the term ‘fitness curve’ – or the synonymous ‘performance curve’ – to describe a climatological bandwidth within which a species can survive, including an optimum value and a critical minimum and maximum:

Fitness curve offers clue to species adaptation to climate change
Continue reading